Devdiscourse

Le pipeline d'IA a extrait les caractéristiques de valence (émotion positive ou négative) et d'éveil (intensité émotionnelle) des expressions faciales des participants à l'aide de deux réseaux neuronaux convolutionnels formés sur l'ensemble de données à grande échelle AffectNet et adaptés à la tâche. Ces caractéristiques dérivées des émotions ont ensuite été analysées à l'aide de trois modèles d'apprentissage automatique, les K-voisins les plus proches, la régression logistique et la machine à vecteurs de support, afin de classer les participants en fonction de leur état cognitif. Un cadre de validation croisée imbriquée a permis de s'assurer que les mesures de performance n'étaient pas biaisées malgré la taille relativement petite de l'ensemble de données.
See full story at Devdiscourse
More Stories From
TECHNOLOGY

L'apprentissage profond permet de classer les cas d'HC, de MCI et d'AD par le biais de la tomodensitométrie.
Bioengineer

L'IA améliore la précision de l'ablation du crâne en neuro-imagerie pour étudier le cerveau tout au long de la vie
GENE ONLINE

L'IA prédit la maladie d'Alzheimer des années à l'avance
INSURANCE
Sign up for our newsletter!
Get the latest information and inspirational stories for caregivers, delivered directly to your inbox.