Devdiscourse

Le pipeline d'IA a extrait les caractéristiques de valence (émotion positive ou négative) et d'éveil (intensité émotionnelle) des expressions faciales des participants à l'aide de deux réseaux neuronaux convolutionnels formés sur l'ensemble de données à grande échelle AffectNet et adaptés à la tâche. Ces caractéristiques dérivées des émotions ont ensuite été analysées à l'aide de trois modèles d'apprentissage automatique, les K-voisins les plus proches, la régression logistique et la machine à vecteurs de support, afin de classer les participants en fonction de leur état cognitif. Un cadre de validation croisée imbriquée a permis de s'assurer que les mesures de performance n'étaient pas biaisées malgré la taille relativement petite de l'ensemble de données.
See full story at Devdiscourse
More Stories From
TECHNOLOGY

L'IA et la psychose : Ce qu'il faut savoir, ce qu'il faut faire
UNIVERSITY OF MICHIGAN HEALTH

Les progrès de la neuro-imagerie et des technologies omiques améliorent le sous-typage de l'ICM
GENE Online

Utilisation de l'analyse de la démarche basée sur l'IA pour établir un seuil de temps de marche de 5 mètres pour discriminer la maladie d'Alzheimer
Cureus Journal of Medical Science
Sign up for our newsletter!
Get the latest information and inspirational stories for caregivers, delivered directly to your inbox.